Error bounds for iterative solutions of Fredholm integral equation
نویسندگان
چکیده
منابع مشابه
On existence and uniqueness of solutions of a nonlinear Volterra-Fredholm integral equation
In this paper we investigate the existence and uniqueness for Volterra-Fredholm type integral equations and extension of this type of integral equations. The result is obtained by using the coupled fixed point theorems in the framework of Banach space $ X=C([a,b],mathbb{R})$. Finally, we give an example to illustrate the applications of our results.
متن کاملA Numerical Method for Solving Stochastic Volterra-Fredholm Integral Equation
In this paper, we propose a numerical method based on the generalized hat functions (GHFs) and improved hat functions (IHFs) to find numerical solutions for stochastic Volterra-Fredholm integral equation. To do so, all known and unknown functions are expanded in terms of basic functions and replaced in the original equation. The operational matrices of both basic functions are calculated and em...
متن کاملBounds for Approximate Solutions of Fredholm Integral Equations Using Kernel Networks
Approximation of solutions of integral equations by networks with kernel units is investigated theoretically. There are derived upper bounds on speed of decrease of errors in approximation of solutions of Fredholm integral equations by kernel networks with increasing numbers of units. The estimates are obtained for Gaussian and degenerate kernels.
متن کاملNew iterative method for solving linear Fredholm fuzzy integral equations of the second kind
متن کامل
Fredholm-volterra Integral Equation with Potential Kernel
A method is used to solve the Fredholm-Volterra integral equation of the first kind in the space L2(Ω)×C(0,T ),Ω = {(x,y) : √ x2+y2 ≤ a}, z = 0, and T <∞. The kernel of the Fredholm integral term considered in the generalized potential form belongs to the class C([Ω]×[Ω]), while the kernel of Volterra integral term is a positive and continuous function that belongs to the class C[0,T ]. Also in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Pacific Journal of Mathematics
سال: 1955
ISSN: 0030-8730,0030-8730
DOI: 10.2140/pjm.1955.5.977